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Deep Learning–Powered CT-Less Multitracer Organ
Segmentation From PET Images

A Solution for Unreliable CT Segmentation in PET/CT Imaging
Yazdan Salimi, MSc,* Zahra Mansouri, MSc,* Isaac Shiri, PhD,†
Ismini Mainta, MD,* and Habib Zaidi, PhD*‡§||
Purpose: The common approach for organ segmentation in hybrid imaging
relies on coregistered CT (CTAC) images. This method, however, presents
several limitations in real clinical workflows where mismatch between
PET and CT images are very common. Moreover, low-dose CTAC images
have poor quality, thus challenging the segmentation task. Recent advances
in CT-less PET imaging further highlight the necessity for an effective PET
organ segmentation pipeline that does not rely on CT images. Therefore, the goal
of this study was to develop a CT-less multitracer PET segmentation framework.
Patients and Methods: We collected 2062 PET/CT images from multiple
scanners. The patients were injected with either 18F-FDG (1487) or 68Ga-
PSMA (575). PET/CT images with any kind of mismatch between PET
and CT images were detected through visual assessment and excluded from
our study. Multiple organs were delineated on CT components using previ-
ously trained in-house developed nnU-Net models. The segmentationmasks
were resampled to coregistered PET images and used to train 4 different deep
learning models using different images as input, including noncorrected PET
(PET-NC) and attenuation and scatter-corrected PET (PET-ASC) for 18F-FDG
(tasks 1 and 2, respectively using 22 organs) and PET-NC and PET-ASC for
68Ga tracers (tasks 3 and 4, respectively, using 15 organs). Themodels’ perfor-
mancewas evaluated in terms of Dice coefficient, Jaccard index, and segment
volume difference.
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Results: The average Dice coefficient over all organs was 0.81 ± 0.15,
0.82 ± 0.14, 0.77 ± 0.17, and 0.79 ± 0.16 for tasks 1, 2, 3, and 4, respec-
tively. PET-ASC models outperformed PET-NC models (P < 0.05) for most
of organs. The highest Dice values were achieved for the brain (0.93 to 0.96
in all 4 tasks), whereas the lowest values were achieved for small organs,
such as the adrenal glands. The trained models showed robust performance
on dynamic noisy images as well.
Conclusions: Deep learning models allow high-performance multiorgan
segmentation for 2 popular PET tracers without the use of CT information.
These models may tackle the limitations of using CT segmentation in PET/
CT image quantification, kinetic modeling, radiomics analysis, dosimetry,
or any other tasks that require organ segmentation masks.

Key Words: PET/CT, 68Ga-PSMA, 18F-FDG, organ segmentation, deep
learning
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P ET/CT hybrid imaging provides valuable information by com-
bining structural, molecular, and physiological information

with a wide range of indications and radiopharmaceuticals.1 Since
the emergence of hybrid PET/CT imaging, the development and use
of different radiotracers have expanded. 18F-FDG, with a wide range
of indications for brain, cardiac, and oncological imaging, is the most
common used radiotracer in clinical practice.2–4 Other common ra-
diotracers are prostate-specific membrane antigen radiolabeled li-
gands, such as 68Ga-PSMA, and radiolabeled somatostatin analogs,
such as 68Ga-DOTATATE. 68Ga-PSMA has high diagnostic accu-
racy in the initial staging and biochemical recurrence evaluation in
patients diagnosed with prostate cancer.5,6 It is also used in the con-
text of PSMA radioligand theranostics, for lesions’ evaluation and
patient selection with a good predictive value.7

Medical image segmentation in general, and in nuclear med-
icine in particular, is a crucial step toward modern personalized
medicine. Segmentation can play an important role in PET image
quantification in each organ and volume of interest (VOI).8,9 Quan-
titative PET provides detailed information for accurate diagnosis
and therapy by precise measurement of tracer uptakes and kinetics
within each VOI.10,11 Nowadays, with the growing interest in per-
sonalized dosimetry for radiopharmaceutical therapy, aiming at
delivering a tumoricidal radiation dose to the target volume while
sparing organs at risk,12,13 the importance of image segmentation is
becoming more pronounced. Moreover, the assessment of treatment
response and prognostication, which requires tumor and organs-at-
risk masks, have recently received significant attention.14–18 In addi-
tion, studies highlighted the importance of nontumoral organs in
prognostication and outcome prediction.19,20

In clinical practice, segmentation is performed manually on
CT or MRI scans after visual inspection of PET images.21–23 Man-
ual contouring is subjective, time-consuming, labor intensive, and
prone to errors and interoperator/intraoperator variability because
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of different levels of expertise and the use of different windowing
settings.24,25 The available methods for automated organ segmenta-
tion in hybrid molecular imaging, predominantly using deep learn-
ing (DL), focus on using coregistered CT images.26 Reliable CT
segmentation tools capable of automated segmentation27,28 can
be used for PET/CT images. However, this approach faces 3
main limitations.

First, mismatch between emission (PET/SPECT) and transmis-
sion (CT) images is highly prevalent in clinical setting.29,30 This issue
becomes more challenging in dynamic imaging protocols, where CT
images are acquired within seconds at the beginning of the examina-
tion, while the dynamic PET scan is usually acquired duringmuch lon-
ger time, including inevitably averaging multiple respiratory and car-
diac cycles. In addition, involuntary changes in the position and size
of the organs, such as the bladder getting filled and bowel movements,
limit CT segmentation reliability.31 Additionally, patient bulk motion
during prolonged dynamic acquisitions further complicate alignment.
Second, the low-dose and ultra-low-dose attenuation correction CT
(CTAC) images acquired using lower tube currents and special beam
filtering,32 often used in PET/CT, suffer from reduced image quality,
thus affecting the accuracy of segmentation. Last, the potential advent
of CT-less clinical scanners, such as PET-only and PET/MRI
scanners,30,33 which utilize DL-based or MLAA (maximum like-
lihood estimation of activity and attenuation)–based attenuation
correction methods, pose a significant challenge to CT-based seg-
mentation approaches. DL-guided MRI multiorgan segmentation
models were recently introduced to overcome PET/MRI organ
segmentation.34 These limitations highlight the necessity for de-
veloping segmentation tools based on emission data only rather
than relying on coregistered CT images.

Utilizing the emission data to improve the performance of
DL-based organ segmentation has been previously reported.35–38
Klyuzhin et al35 used both PET and CT images for improved organ
segmentation in PET/CT. Yazdani et al36 developed DL segmen-
tation models to segment both healthy organs and malignant le-
sions from 68Ga-PSMA PET/CT images and compared them to
using only PET, only CT, and both images as input to their DL
models. Wang et al37 segmented bladder and heart on 18F-FDG
PET/CT images to overcome the issue of absence or availability
of unreliable CT images. Clement et al38 developed a model to
perform CT-less organ segmentation on 18F-FDG PET images for
dynamic imaging.

This study aimed to develop a reliable CT-less multiorgan
segmentation pipeline on 2 common radiotracers (18F-FDG and
FIGURE 1. Coronal slices showing representative cases presentin
images. Please note the chest/abdomen interval organs.
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68Ga-PSMA) using a multicentric dataset to address the limita-
tions of CT-based segmentation approaches in hybrid PET/
CT imaging.

PATIENTS AND METHODS

Common Processing and Steps for Both Tracers for
Reference Segmentation Generation

Three types of images, including CTAC, noncorrected PET
(NC), and attenuation and scatter-corrected (CT-ASC) PET images,
were collected in a fully anonymized setup. All images were visual-
ized using the open-source ITK-SNAP software.39 Images
presenting with a mismatch between PET and CT were excluded
from training, whereas PET/CT images without mismatch were in-
cluded in the next steps. Figure 1 illustrates an example of a mis-
match visualized with segmentation generated based on the
coregistered CT scan. Using previously developed DL-based seg-
mentation models in our group28 based on nnU-Net architecture,40
a total number of 22 organs were delineated on the CTAC compo-
nent of PET/CT images. All nnU-Net 5-folds were assembled on
images to ensure the highest segmentation accuracy. The previously
trained models were separate models, each dedicated to 1 specific
organ. The CT-generated segmentation masks were dilated by
2 mm and resampled with the coregistered PET image voxel spac-
ing. During down sampling from CT voxel spacing (1 to 1.5 mm)
to PET spacing (1.6 to 4 mm) without dilation, certain organ
shapes, such as ribs and thin parts of pelvic hip bones, may be lost.
This occurs because nearest neighborhood interpolation, which is
necessary for maintaining a binary segment with values of 0 and
1, has limitations that can result in the removal of fine details in
the segmentation. The segmentations were integrated into a unified
multivalue segmentation mask using the Simple ITK 2.2 Python li-
brary, prioritizing organs with higher Dice values from CT training
task. For instance, if a single voxel was segmented as both liver and
stomach by separate CT segmentation models, the voxel was clas-
sified as liver tissue to avoid overlap between the 2 organs. CT seg-
mentation models consist of 1 independent model per organ, and as
such, 2 models may detect single voxels as belonging to different
organs. Besides, when a segmentation mask is downsampled from
CT to PET resolution, some voxels may be considered as segmen-
tation output of 2 organs with overlap on CT images. For example,
when the lung and liver segmentation masks are you downsampled,
some voxels may have “1” segment value in both liver and lung
g with mismatch between CT-based segmentation and PET

© 2025 The Author(s). Published by Wolters Kluwer Health, Inc.
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FIGURE 2. Flowchart of steps followed in this study, including generation of reference segmentation masks and training the
LD-nnU-Net models.
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areas due to the nature of nearest neighborhood and linear
interpolation methods. We prioritized the model with higher per-
formance when making decisions about specific voxels, as we trust
the high-performance model more than the low-performance
TABLE 1. Detailed Demographics of All 1487 Images Included as

Scanner Siemens Biogra

Number 689
kVp 80, 100, 110
CTDIvol (mGy) 3.92 ± 2.29 (0.2
Age (y) 61.639 ± 16.166
Gender Female: 376, m
Date 2014–20
Patient height (m) 1.66 ± 0.14 (1.
Patient weight (kg) 69.1 ± 16.6 (29
Average tube current (mA) 129.5 ± 51.5 (24
PET reconstruction OSEM 3D + PS

© 2025 The Author(s). Published by Wolters Kluwer Health, Inc.
model. The rationale behind this decision is based on the perfor-
mance metrics and the characteristics of each organ, which deter-
mine how easy or difficult a DL model can detect them. In the spe-
cific example about the liver and stomach, the CT segmentation
Dataset 1 (18F-FDG)

ph mCT Siemens Biograph Vision

798
, 140 80, 100, 110, 140
5–20.85) 4.49 ± 2.24 (0.63–24.16)
(5.0–93.0) 61.265 ± 16.993 (6.0–96.0)
ale: 313 Female: 439, male: 359
21 2019–2021
34–1.98) 1.68 ± 0.10 (0.72–2.0)
.4–164) 70.1 ± 16.4 (21.3–151.0)
.3–314.1) 128.1 ± 48.1 (32.0–476.421)
F + TOF OSEM 3D + PSF + TOF
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TABLE 2. Demographic Information of All Included 575 68Ga-PET/CT Images From Dataset 2 in This Study

Scanner SIEMENS Biograph
SIEMENS

Biograph Horizon
SIEMENS

Biograph 128 Vision
SIEMENS

Biograph 128 mCT

No. images 314 69 112 80
Age (y) 67.3 ± 8.2 (40–93) 65.3 ± 10.9 (17–88) 71.1 ± 8.1 (50–90) 71.3 ± 7.8 (54–93)
Date 2016 to 2020 2021 to 2022 2019 to 2021 2019 to 2021
Center 1 2 3 4
kVp N/A 110 and 130 100, 120, 140 100, 120, 140
Pitch N/A 1.2 ± 0.0 (1.2–1.2) 0.8 ± 0.0 (0.8–0.8) 0.8 ± 0.0 (0.8–0.8)
CTDIvol (mGy) N/A 4.21 ± 1.78 (1.94–11.91) 5.16 ± 1.84 (0.66–14.14) 5.10 ± 1.75 (1.18–12.17)
Average tube current (mA) 93.4 ± 13.4 (44.5–122.9) N/A 117.8 ± 26.1 (73.3–264.2) 121.6 ± 31.2 (76.7–318.1)
Time per bed (s) 180 ± 24 (220–270) 87 ± 29 (60–120) 250 ± 18 (142–266) 212 ± 10 (15–217)
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model had a Dice coefficient of ~97% and 93% for liver and
stomach, respectively. Each voxel needs to be considered as be-
longing to a single organ for training the multilabel models with
no overlap between the organs. Comparing the 2 models’ perfor-
mance, it is more probable that liver segmentation model is the
correct one. The segmentation masks and PET images were used
to train an nnU-Net model using a 5-fold cross-validation data
split. Four different tasks were defined: 2 utilizing 18F-FDG
PET images and 2 utilizing 68Ga-PET images (Fig. 2). Each task
involved using either ASC or NC as inputs, namely, 18F-FDG-NC
(task 1), 18F-FDG-ASC (task 2), 68Ga-NC (task 3), and 68Ga-
ASC (task 4).

Datasets
This study included 2 separate sets of images acquired from

patients injected with 18F-FDG (dataset 1) and 68Ga-PSMA tracers
(dataset 2). The study was approved by the local ethics committee,
and consent was waived owing to the retrospective nature of the
study protocol.

Dataset 1 (18F-FDG)
This dataset included patients injected with 18F-FDG for

oncological indications, with whole-body PET/CT images acquired
onBiographmCTandBiographVision scanners (SiemensHealthineers,
Memphis, TN). Initially, 1487 images were included. After excluding
PET/CT image pairs with mismatches, that is 947 image pairs (~64%),
540 cases remained for 5-fold training. The semidiagnostic CTAC
images acquired with an average tube current of ~110 mAs, and
PET-NC and PET-ASC images were reconstructed using iterative
reconstruction methods. Detailed information about dataset 1 can
be found in Table 1. A total number of 22 organs were selected
for tasks 1 and 2 on dataset 1, including the adrenal gland (AG),
FIGURE 3. Box plot of Dice coefficients for task 1 versus 2.
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aorta, colon, esophagus, eyeballs, femoral heads (FHs), gall bladder
(GB), heart, hip bones (including ilium, ischium, and pubis as a sin-
gle mask), kidneys, liver, lungs, pancreas, erectus spinae, rib cage,
sacrum, spleen, stomach, urinary bladder (UB), vertebrae, brain,
and clavicle.

Dataset 2 (68Ga-PSMA)
These data included a total number of 575 PET/CT images

injected with 68Ga-PSMA radiopharmaceutical scanned on 4 differ-
ent Siemens scanners at 3 different nuclear medicine centers. All
patients were male.

From the 575 cases initially collected, 390 were excluded,
leaving only 185 clean cases for the remainder of our study.
Table 2 summarizes the demographic information for all 575 cases
initially included in our study. Some informationwasmissing due to
the anonymization process. A total number of 15 organs were se-
lected for tasks 3 and 4 on dataset 2, including AG aorta, brain, eye-
balls, hip bones, kidneys, liver, lungs, pancreas, rib cage, sacrum,
spleen, UB, vertebrae, and heart. Seven organs were excluded from
dataset 2 for tasks 3 and 4 as there is less anatomical information in
68Ga images compared with 18F-FDG images. We aimed to include
only organs with distinguishable uptake.

Model Training Parameters
Four separated nnU-Net40 models were trained for the 4 de-

fined tasks. For each task, the combined segmentation masks and
the corresponding PET images were fed into an nnU-Net version
2 (nnunetv2) pipeline using default parameters except the training
length, which was increased from the default value of 1000 epochs
to 2000 epochs to enhance accuracy. We utilized nnU-Net 3D-
fullres training configuration, which uses 3D patches for training.
The initial learning rate was set to 1e-2 and decreased every epoch.
© 2025 The Author(s). Published by Wolters Kluwer Health, Inc.
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TABLE 3. Average Performance Metrics of Our Models for Task 1 From 5-Fold Cross-Validation

Task Segment Dice Jaccard Sensitivity Specificity Precision Accuracy
Mean Surface
Distance (mm)

Volume
Difference (mL)

Task 1 AG 0.561 ± 0.135 0.402 ± 0.122 0.572 ± 0.157 1.0 ± 0.0 0.579 ± 0.146 1.0 ± 0.0 2.231 ± 2.006 −0.309 ± 2.588
Aorta 0.884 ± 0.045 0.796 ± 0.066 0.888 ± 0.051 1.0 ± 0.0 0.883 ± 0.054 1.0 ± 0.0 1.023 ± 0.629 −0.52 ± 26.031
Brain 0.958 ± 0.032 0.92 ± 0.054 0.956 ± 0.032 1.0 ± 0.0 0.96 ± 0.041 1.0 ± 0.0 6.631 ± 14.308 −7.448 ± 64.478

Clavicles 0.762 ± 0.084 0.622 ± 0.101 0.767 ± 0.092 1.0 ± 0.0 0.761 ± 0.094 1.0 ± 0.0 2.529 ± 4.705 −0.055 ± 9.39
Colon 0.725 ± 0.091 0.576 ± 0.103 0.711 ± 0.1 1.0 ± 0.0 0.745 ± 0.095 0.999 ± 0.0 4.062 ± 2.404 −48.169 ± 141.816

Esophagus 0.754 ± 0.085 0.612 ± 0.101 0.763 ± 0.096 1.0 ± 0.0 0.751 ± 0.094 1.0 ± 0.0 1.295 ± 0.857 0.528 ± 7.615
Eyeballs 0.757 ± 0.171 0.635 ± 0.192 0.779 ± 0.171 1.0 ± 0.0 0.742 ± 0.177 1.0 ± 0.0 1.879 ± 2.475 1.14 ± 2.745
FHs 0.905 ± 0.058 0.831 ± 0.086 0.914 ± 0.047 1.0 ± 0.0 0.9 ± 0.079 1.0 ± 0.0 3.607 ± 9.742 22.545 ± 99.621
GB 0.586 ± 0.193 0.439 ± 0.182 0.596 ± 0.21 1.0 ± 0.0 0.625 ± 0.214 1.0 ± 0.0 5.102 ± 8.522 −2.832 ± 14.219
Heart 0.913 ± 0.034 0.841 ± 0.053 0.918 ± 0.049 1.0 ± 0.0 0.911 ± 0.048 1.0 ± 0.0 3.038 ± 5.685 3.421 ± 64.693
Hips 0.887 ± 0.036 0.799 ± 0.053 0.886 ± 0.039 1.0 ± 0.0 0.889 ± 0.045 1.0 ± 0.0 0.809 ± 0.386 −4.637 ± 34.58

Kidneys 0.851 ± 0.077 0.747 ± 0.095 0.866 ± 0.084 1.0 ± 0.0 0.844 ± 0.087 1.0 ± 0.0 2.164 ± 3.047 5.254 ± 49.649
Liver 0.915 ± 0.049 0.846 ± 0.067 0.92 ± 0.063 1.0 ± 0.0 0.914 ± 0.052 1.0 ± 0.0 2.48 ± 1.942 3.991 ± 222.317
Lungs 0.927 ± 0.022 0.865 ± 0.037 0.929 ± 0.034 1.0 ± 0.0 0.927 ± 0.038 0.999 ± 0.0 1.824 ± 0.841 4.763 ± 214.312
Pancreas 0.682 ± 0.126 0.53 ± 0.131 0.688 ± 0.143 1.0 ± 0.0 0.691 ± 0.131 1.0 ± 0.0 3.561 ± 3.175 −1.579 ± 19.486
RAM 0.903 ± 0.025 0.824 ± 0.041 0.902 ± 0.03 1.0 ± 0.0 0.906 ± 0.036 1.0 ± 0.0 1.083 ± 0.387 −9.367 ± 54.561

Rib cage 0.651 ± 0.111 0.492 ± 0.116 0.662 ± 0.115 1.0 ± 0.0 0.645 ± 0.12 0.999 ± 0.0 1.729 ± 1.758 10.792 ± 68.369
Sacrum 0.872 ± 0.042 0.776 ± 0.056 0.888 ± 0.046 1.0 ± 0.0 0.859 ± 0.05 1.0 ± 0.0 1.237 ± 0.791 8.624 ± 16.751
Spleen 0.819 ± 0.141 0.711 ± 0.153 0.834 ± 0.148 1.0 ± 0.0 0.82 ± 0.142 1.0 ± 0.0 3.581 ± 6.563 4.592 ± 58.892
Stomach 0.758 ± 0.1 0.62 ± 0.113 0.763 ± 0.118 1.0 ± 0.0 0.767 ± 0.106 1.0 ± 0.0 3.637 ± 3.425 −3.837 ± 43.979

UB 0.821 ± 0.112 0.71 ± 0.141 0.832 ± 0.137 1.0 ± 0.0 0.835 ± 0.138 1.0 ± 0.0 3.774 ± 15.654 −4.205 ± 44.513
Vertebrae 0.856 ± 0.031 0.75 ± 0.046 0.862 ± 0.035 1.0 ± 0.0 0.852 ± 0.04 1.0 ± 0.0 1.306 ± 2.694 11.017 ± 53.781
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The decay of 3e-5 and the Dice cross-entropy loss function were
used. Five-fold cross-validation data splits were used, with 80% of
images used for training and 20% for testing in each fold. The
TABLE 4. Evaluation Metrics for Task 2, Averaged Over 5-Fold Cr

Task Segment Dice Jaccard Sensitivity Specif

Task 2 AG 0.568 ± 0.139 0.409 ± 0.126 0.594 ± 0.156 1.0 ±
Aorta 0.892 ± 0.039 0.807 ± 0.057 0.892 ± 0.046 1.0 ±
Brain 0.961 ± 0.027 0.925 ± 0.045 0.961 ± 0.027 1.0 ±

Clavicles 0.767 ± 0.079 0.628 ± 0.097 0.773 ± 0.089 1.0 ±
Colon 0.723 ± 0.083 0.573 ± 0.095 0.717 ± 0.092 1.0 ±

Esophagus 0.777 ± 0.072 0.641 ± 0.09 0.791 ± 0.084 1.0 ±
Eyeballs 0.832 ± 0.108 0.725 ± 0.135 0.836 ± 0.105 1.0 ±

FH 0.899 ± 0.058 0.822 ± 0.086 0.906 ± 0.047 1.0 ±
GB 0.607 ± 0.197 0.461 ± 0.185 0.627 ± 0.207 1.0 ±
Heart 0.922 ± 0.03 0.857 ± 0.047 0.928 ± 0.042 1.0 ±
Hips 0.889 ± 0.031 0.802 ± 0.047 0.888 ± 0.035 1.0 ±

Kidneys 0.856 ± 0.075 0.754 ± 0.091 0.874 ± 0.078 1.0 ±
Liver 0.929 ± 0.046 0.869 ± 0.061 0.937 ± 0.058 1.0 ±
Lungs 0.943 ± 0.018 0.892 ± 0.031 0.935 ± 0.027 1.0 ±
Pancreas 0.692 ± 0.122 0.541 ± 0.128 0.707 ± 0.137 1.0 ±
RAM 0.897 ± 0.025 0.814 ± 0.039 0.89 ± 0.029 1.0 ±

Rib cage 0.704 ± 0.093 0.55 ± 0.103 0.703 ± 0.097 1.0 ±
Sacrum 0.875 ± 0.033 0.779 ± 0.051 0.888 ± 0.04 1.0 ±
Stomach 0.769 ± 0.101 0.634 ± 0.116 0.771 ± 0.121 1.0 ±
Spleen 0.847 ± 0.129 0.751 ± 0.143 0.859 ± 0.132 1.0 ±
UB 0.821 ± 0.109 0.709 ± 0.137 0.836 ± 0.132 1.0 ±

Vertebrae 0.862 ± 0.028 0.759 ± 0.042 0.866 ± 0.032 1.0 ±

© 2025 The Author(s). Published by Wolters Kluwer Health, Inc.
training process was conducted on a PC equipped with an
RTX4090 GPU with 24 GB of dedicated memory and a Core i9-
13900KF CPU with 32 GB of RAM.
oss-Validation

icity Precision Accuracy
Mean Surface
Distance (mm)

Volume
Difference (mL)

0.0 0.569 ± 0.149 1.0 ± 0.0 2.31 ± 2.474 0.272 ± 2.635
0.0 0.895 ± 0.046 1.0 ± 0.0 0.943 ± 0.61 −2.592 ± 24.324
0.0 0.962 ± 0.039 1.0 ± 0.0 7.414 ± 18.699 −2.775 ± 69.11
0.0 0.765 ± 0.089 1.0 ± 0.0 2.974 ± 5.793 0.244 ± 9.83
0.0 0.736 ± 0.094 0.999 ± 0.0 4.169 ± 2.304 −28.668 ± 128.858
0.0 0.768 ± 0.083 1.0 ± 0.0 1.261 ± 2.314 1.269 ± 6.881
0.0 0.836 ± 0.122 1.0 ± 0.0 1.974 ± 12.072 −0.064 ± 2.837
0.0 0.896 ± 0.079 1.0 ± 0.0 3.741 ± 9.495 19.62 ± 96.896
0.0 0.63 ± 0.219 1.0 ± 0.0 5.11 ± 8.44 −1.745 ± 14.354
0.0 0.919 ± 0.04 1.0 ± 0.0 2.799 ± 5.65 5.597 ± 52.358
0.0 0.892 ± 0.04 1.0 ± 0.0 0.815 ± 0.461 −5.193 ± 36.071
0.0 0.845 ± 0.086 1.0 ± 0.0 2.078 ± 2.702 9.694 ± 42.382
0.0 0.924 ± 0.043 1.0 ± 0.0 2.139 ± 1.989 16.911 ± 199.752
0.0 0.952 ± 0.026 0.999 ± 0.0 1.456 ± 0.806 −64.043 ± 153.441
0.0 0.692 ± 0.128 1.0 ± 0.0 3.543 ± 3.336 0.945 ± 20.422
0.0 0.906 ± 0.036 1.0 ± 0.0 1.201 ± 0.504 −23.925 ± 57.449
0.0 0.708 ± 0.102 0.999 ± 0.0 1.486 ± 1.755 −8.441 ± 63.949
0.0 0.864 ± 0.044 1.0 ± 0.0 1.243 ± 0.994 7.263 ± 17.211
0.0 0.779 ± 0.106 1.0 ± 0.0 3.545 ± 3.688 −4.948 ± 42.206
0.0 0.849 ± 0.128 1.0 ± 0.0 3.265 ± 6.425 3.099 ± 60.25
0.0 0.83 ± 0.139 1.0 ± 0.0 4.263 ± 16.277 −2.777 ± 45.19
0.0 0.86 ± 0.037 1.0 ± 0.0 1.253 ± 2.744 6.596 ± 51.721
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TABLE 5. Mann-Whitney P Values Comparing Task 1 and Task 2

Organ Dice Jaccard Mean Surface Distance Volume Difference

Liver 0.000 0.000 0.000 0.089
Brain 0.619 0.619 0.485 0.164
AG 0.236 0.236 0.315 0.001
Stomach 0.011 0.011 0.069 0.473
Rib cage 0.000 0.000 0.000 0.000
Colon 0.396 0.396 0.136 0.012
Erectus spinae 0.000 0.000 0.000 0.000
Sacrum 0.318 0.318 0.248 0.255
Aorta 0.003 0.003 0.003 0.024
Clavicle 0.385 0.385 0.887 0.633
Esophagus 0.000 0.000 0.000 0.068
Vertebrae 0.001 0.001 0.006 0.092
Eyeballs 0.000 0.000 0.000 0.000
FH 0.000 0.000 0.004 0.342
GB 0.034 0.034 0.261 0.061
Spleen 0.000 0.000 0.000 0.458
Kidneys 0.162 0.162 0.296 0.263
Lungs 0.000 0.000 0.000 0.000
Hips 0.421 0.421 0.763 0.855
Pancreas 0.175 0.175 0.350 0.022
UB 0.741 0.741 0.362 0.463
Heart 0.000 0.000 0.000 0.907

P < 0.05 reflects statistically significant difference.

Salimi et al Clinical Nuclear Medicine • Volume 00, Number 00, Month 2025
Evaluation Strategy
Common segmentation evaluation metrics, including Dice

coefficient, Jaccard index, precision, sensitivity, specificity, accu-
racy, mean surface distance, and segment volume difference, were
used to compare the predicted segmentation with the reference
ones. The Mann-Whitney U test was employed to compare the
models’ performance on NC and ASC images. In other words, we
compared performance between tasks 1 and 2 as well as between
tasks 3 and 4, seeking statistically significant differences using a
2-tailed P value of 0.05 as the threshold.
FIGURE 4. Coronal (top), axial (middle), and 3D (bottom) visual
presents 1 organ; the internal organs, such as kidneys, are not vis
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In summary, the proposed methodology includes:

1. Generating segmentations on CT images.
2. Visual assessment and excluding cases presenting with PETand

CT misalignment.
3. Resampling and converting the segmentation outputs to PET

SUV images.
4. Training the modified nnU-Net segmentation models for each

task for 2 tracers, namely, 18F-FDG and 68Ga-PSMA.

Finally, the models’ performancewas evaluated for each task.
izations of the segmentations for tasks 1 and 2. Each color
ible in 3D-rendered images. The face is masked for privacy.

© 2025 The Author(s). Published by Wolters Kluwer Health, Inc.
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RESULTS

Tasks 1 and 2
For tasks 1 and 2, an average Dice value over all organs of

0.81 ± 0.15 and 0.82 ± 0.14 was achieved, respectively. As shown
in Figure 3, in terms of Dice scores, task 1 demonstrated superior
performance across most organs compared with task 2.

Tables 3 and 4 summarize the details of 5-fold cross-valida-
tion results for tasks 1 and 2, respectively. The highest Dice coeffi-
cients were achieved for the brain and lungs, whereas the lowest
valueswere found for smaller organs, such asAGs. The detailed results
separated by every fold may be found in Supplementary Table 1,
http://links.lww.com/CNM/A531. Supplementary Figure 1 compares
the resulting Dice for all tasks, http://links.lww.com/CNM/A531.

Table 5 compares P values between tasks 1 and 2, indicating
significant differences across most organs. There are significant
differences in Dice values for most organs between tasks 1 and 2,
FIGURE 5. Representative excluded case presenting an image wi
row), PET-NC image and task 1 generated masks, columns 1 to 4
rendered segmentations. B (middle row), PET-NC image and the
image, columns 1 to 4 show coronal images, whereas column 5 s
mismatch at lung/liver interface. C (bottom row), The fused PET-N
views. The arrows highlight the mismatch regions.

© 2025 The Author(s). Published by Wolters Kluwer Health, Inc.
whereas volume differences show significance in fewer organs. It
should be noted that there was statistically significant difference be-
tween tasks 1 and 2 for some organs, but the difference between av-
erages is negligible. An example of our model output for task 2
tested on a noisy dynamic acquisition is shown in Supplementary
Figure 2, http://links.lww.com/CNM/A531.

Figure 4 demonstrates an example of segmented organs for
tasks 1 and 2 on a case with a good match between PETand CT im-
ages from a cross-validation strategy, depicting the excellent perfor-
mance of our models.

Figure 5 shows an example of PET/CT imagewith unreliable
CT segmentation due to respiratory mismatch affecting the seg-
mentation of moving organs, especially the lungs, liver, and spleen.
This case was excluded from cross-validation training; the trained
models of tasks 1 and 2 were ensembled on the corresponding im-
ages. In other words, task 1 modelwas tested on PET-NC and task 2
model on PET-ASC images.
th respiratory mismatch between PET and CT images. A (top
show coronal images, whereas column 5 shows the 3D-
segmentation masks generated on the coregistered CTAC
hows the 3D-rendered segmentations. The arrow shows the
C and CT in coronal (columns 1 to 4) and sagittal (column 5)
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TABLE 6. Average Segmentation Metrics From 5-Fold Cross-Validation for Task 3 for All Included Organs

Task Segment Dice Jaccard Sensitivity Specificity Precision Accuracy
Mean Surface
Distance (mm)

Volume
Difference (mL)

Task 3 AG 0.421 ± 0.154 0.279 ± 0.13 0.391 ± 0.154 1.0 ± 0.0 0.482 ± 0.179 1.0 ± 0.0 4.085 ± 4.066 −2.404 ± 3.93
Aorta 0.809 ± 0.076 0.685 ± 0.092 0.806 ± 0.091 1.0 ± 0.0 0.819 ± 0.074 0.999 ± 0.0 2.264 ± 4.585 −9.15 ± 41.849
Brain 0.928 ± 0.046 0.868 ± 0.072 0.924 ± 0.057 1.0 ± 0.0 0.934 ± 0.051 0.999 ± 0.001 5.735 ± 10.507 −16.978 ± 83.016

Eyeballs 0.67 ± 0.163 0.524 ± 0.169 0.678 ± 0.169 1.0 ± 0.0 0.669 ± 0.168 1.0 ± 0.0 4.195 ± 23.087 0.403 ± 4.944
Heart 0.869 ± 0.065 0.774 ± 0.09 0.871 ± 0.081 1.0 ± 0.0 0.872 ± 0.073 0.999 ± 0.0 6.668 ± 17.124 −6.179 ± 86.089
Hips 0.804 ± 0.069 0.677 ± 0.084 0.804 ± 0.079 0.999 ± 0.0 0.806 ± 0.072 0.999 ± 0.0 2.324 ± 5.632 −6.756 ± 68.178

Kidneys 0.824 ± 0.109 0.712 ± 0.129 0.83 ± 0.119 1.0 ± 0.0 0.827 ± 0.104 0.999 ± 0.0 2.837 ± 4.473 1.095 ± 79.212
Liver 0.867 ± 0.075 0.772 ± 0.103 0.874 ± 0.088 0.999 ± 0.001 0.866 ± 0.081 0.998 ± 0.001 4.052 ± 3.702 5.234 ± 241.476
Lungs 0.899 ± 0.071 0.821 ± 0.081 0.899 ± 0.083 0.999 ± 0.001 0.906 ± 0.048 0.997 ± 0.001 2.578 ± 2.813 −25.67 ± 344.082
Pancreas 0.596 ± 0.159 0.441 ± 0.152 0.575 ± 0.175 1.0 ± 0.0 0.645 ± 0.171 1.0 ± 0.0 5.236 ± 6.45 −13.614 ± 30.184
Rib cage 0.555 ± 0.085 0.389 ± 0.078 0.575 ± 0.091 0.999 ± 0.0 0.542 ± 0.095 0.997 ± 0.001 2.791 ± 1.588 47.523 ± 118.76
Sacrum 0.802 ± 0.072 0.675 ± 0.086 0.817 ± 0.083 1.0 ± 0.0 0.792 ± 0.077 1.0 ± 0.0 2.492 ± 1.386 8.747 ± 30.328
Spleen 0.794 ± 0.119 0.671 ± 0.14 0.792 ± 0.125 1.0 ± 0.0 0.808 ± 0.135 1.0 ± 0.0 3.542 ± 4.103 −7.187 ± 39.075
UB 0.822 ± 0.126 0.713 ± 0.147 0.818 ± 0.147 1.0 ± 0.0 0.848 ± 0.136 1.0 ± 0.0 3.83 ± 9.019 −9.085 ± 49.223

Vertebrae 0.818 ± 0.036 0.694 ± 0.049 0.826 ± 0.043 0.999 ± 0.0 0.812 ± 0.046 0.998 ± 0.0 1.527 ± 0.483 18.014 ± 83.173
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Tasks 3 and 4
The averages of the Dice scores over 15 organs from 5-fold

cross-validation were 0.766 ± 0.171 and 0.788 ± 0.163 for tasks 3
and 4, respectively. The performance metrics for tasks 3 and 4 are
summarized in Tables 6 and 7. The detailed performance metrics
are reported separately for each fold in Supplementary Table 1,
http://links.lww.com/CNM/A531. The Dice values for task 4 were
significantly higher than those for task 3 with P values below
0.05 for most organs, except for larger organs with a clear objective
contrast on 68Ga-NC images, such as the hips, sacrum, vertebrae,
kidneys, and UB. The P values are reported in Table 8. The lowest
Dice value was observed for AG, whereas the highest was achieved
for the brain. Figure 6 displays the box plot of Dice scores for the
included organs in tasks 3 and 4.

Figure 7 illustrates an example with strong alignment be-
tween CT and PETwithin the 5-fold cross-validation data split for
tasks 3 and 4. Figure 8 depicts an image from the excluded studies
TABLE 7. Performance Metrics From 5-Fold Cross-Validation for

Task Segment Dice Jaccard Sensitivity Specific

Task 4 AG 0.437 ± 0.155 0.293 ± 0.133 0.414 ± 0.154 1.0 ± 0
Aorta 0.825 ± 0.075 0.708 ± 0.096 0.824 ± 0.081 1.0 ± 0
Brain 0.942 ± 0.042 0.893 ± 0.064 0.942 ± 0.053 1.0 ± 0

Eyeballs 0.753 ± 0.134 0.62 ± 0.151 0.747 ± 0.132 1.0 ± 0
Heart 0.897 ± 0.057 0.818 ± 0.081 0.898 ± 0.073 1.0 ± 0
Hips 0.812 ± 0.068 0.688 ± 0.082 0.803 ± 0.08 0.999 ± 0

Kidneys 0.819 ± 0.12 0.707 ± 0.136 0.824 ± 0.118 1.0 ± 0
Liver 0.904 ± 0.062 0.829 ± 0.087 0.906 ± 0.082 0.999 ± 0
Lungs 0.926 ± 0.035 0.864 ± 0.054 0.926 ± 0.047 0.999 ± 0
Pancreas 0.63 ± 0.151 0.476 ± 0.148 0.617 ± 0.164 1.0 ± 0
Rib cage 0.585 ± 0.077 0.417 ± 0.072 0.607 ± 0.081 0.999 ± 0
Sacrum 0.793 ± 0.086 0.664 ± 0.101 0.804 ± 0.095 1.0 ± 0
Spleen 0.839 ± 0.097 0.732 ± 0.123 0.838 ± 0.107 1.0 ± 0
UB 0.834 ± 0.11 0.728 ± 0.135 0.828 ± 0.138 1.0 ± 0

Vertebrae 0.819 ± 0.039 0.696 ± 0.053 0.831 ± 0.05 0.999 ± 0
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demonstrating the mismatch between PET and CT images. This
case shows the unreliable CT generated masks and the excellent
performance of our model in delineating organs.

DISCUSSION
Automatic, fast, and accurate segmentation of medical im-

ages has become 1 of the hottest topics in precision medicine for
personalized dosimetry and image quantification.41–45 In nuclear
medicine, where PET/CTand SPECT/CTare commonly performed
for diagnostic and therapeutic purposes, automated organ segmenta-
tion is crucial. Recent studies showed the importance of organomics
and organ information in overall survival prediction15,20 as well as
misalignment detection on PET/CT images,46 as well as pretherapy
dose prediction in PSMA theragnostic procedures.14 The common
method used for automated organ delineation in hybrid PET/CT
and SPECT/CT relies on the coregistered CT images. However, this
approach is subject to limitations, such as the highly prevalent
Task 4

ity Precision Accuracy
Mean Surface
Distance (mm)

Volume
Difference (mL)

.0 0.485 ± 0.179 1.0 ± 0.0 3.355 ± 2.967 −1.98 ± 3.422

.0 0.832 ± 0.085 1.0 ± 0.0 1.913 ± 2.273 −3.939 ± 69.773

.0 0.945 ± 0.044 0.999 ± 0.0 5.559 ± 11.292 −9.794 ± 84.242

.0 0.774 ± 0.14 1.0 ± 0.0 6.797 ± 37.747 0.379 ± 15.853

.0 0.9 ± 0.061 0.999 ± 0.0 6.186 ± 17.138 −5.302 ± 73.578

.0 0.824 ± 0.067 0.999 ± 0.0 2.189 ± 6.148 −25.21 ± 70.011

.0 0.826 ± 0.126 0.999 ± 0.001 3.641 ± 8.759 5.333 ± 132.237

.0 0.906 ± 0.055 0.999 ± 0.001 2.599 ± 2.166 −9.704 ± 222.004

.001 0.927 ± 0.037 0.998 ± 0.001 1.744 ± 1.395 −18.3 ± 226.443

.0 0.665 ± 0.17 1.0 ± 0.0 4.417 ± 5.866 −9.752 ± 28.548

.0 0.571 ± 0.092 0.997 ± 0.001 2.391 ± 1.414 49.412 ± 122.563

.0 0.786 ± 0.091 1.0 ± 0.0 3.595 ± 10.435 6.662 ± 33.149

.0 0.847 ± 0.106 1.0 ± 0.0 2.752 ± 5.183 −2.885 ± 31.768

.0 0.861 ± 0.125 1.0 ± 0.0 2.628 ± 2.176 −9.362 ± 46.993

.0 0.81 ± 0.048 0.998 ± 0.001 1.54 ± 0.598 29.778 ± 96.0

© 2025 The Author(s). Published by Wolters Kluwer Health, Inc.
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TABLE 8. P Values ofMann-Whitney Statistical Test Comparing
the Performance Metrics for Task 3 vs Task 4

Organ

P

Dice Jaccard
Mean Surface

Distance
Volume

Difference

AG 0.269 0.269 0.049 0.210
Aorta 0.000 0.000 0.001 0.962
Brain 0.000 0.000 0.015 0.083
Eyeballs 0.000 0.000 0.000 0.000
Hips 0.141 0.141 0.054 0.004
Kidneys 0.668 0.668 0.776 0.373
Liver 0.000 0.000 0.000 0.359
Lungs 0.000 0.000 0.000 0.684
Pancreas 0.012 0.012 0.004 0.331
Rib cage 0.000 0.000 0.000 0.909
Sacrum 0.565 0.565 0.532 0.375
Spleen 0.000 0.000 0.000 0.607
UB 0.359 0.359 0.135 0.749
Vertebrae 0.684 0.684 0.837 0.164
Heart 0.000 0.000 0.000 0.979
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mismatch between emission and CT images and the low quality of
low-dose CTAC images. UB filling and bowel movements are inev-
itable and could cause more problematic mismatch between the CT
generatedmasks and realistic organ position, shape, and size depicted
on PET images. Additionally, not all PET scanners are equipped with
CT for attenuation and scatter correction, and as such, an approach
that does not rely on CT is necessary.

We targeted 2 commonly used tracers for PET imaging and
developed a comprehensive DL segmentation pipeline for the auto-
mated delineation of multiple organs to be used in different clinical
scenarios. To ensure a strong match between emission and CT im-
ages in the training set and to prevent the trained DL models from
being affected by mismatch, we first cleaned our data by excluding
PET/CT image pairs presenting with respiratory, cardiac, and bulk
motion mismatches. After visual assessment of our initially in-
cluded dataset, we excluded more than 65% of the 2062 images
from our study, emphasizing the high prevalence of mismatch in
PET/CT imaging.

We included different numbers of organs depending on the
tracer as 68Ga-PSMA PET images contain less anatomical informa-
tion. Our goal was to develop a reliable model based on clinical
FIGURE 6. Box plots showing the Dice scores for task 3 and 4 fo

© 2025 The Author(s). Published by Wolters Kluwer Health, Inc.
studies for potential implementation in clinical setting. The first sce-
nario for using our models involve performing segmentation on
PETASC images corrected either by CTor any other method, such
as MLAA or DL-based ASC techniques. In this scenario, the CT
image is either unavailable or too noisy to be segmented through
DL. To address this limitation, we provided models from tasks 2
and 4 for delineation on PET ASC images, as they outperformed
the models of tasks 1 and 3, which use NC images. PETASC im-
ages benefit from better contrast and contain more information
due to corrections for degrading factors, such as attenuation, scatter,
and point-spread function (PSF).

Additionally, we considered the second scenario of perform-
ing CT-less PET segmentation where the PET ASC image is
corrected with a mismatched CT, or PET-ASC images are not avail-
able. Such corrections can induce unacceptable mismatch artifacts
on PETASC images, removing the useful information, for example,
in areas such as chest abdomen interval or causing halo artifacts
which are very common in 68Ga-PSMA PET/CT imaging. In this
scenario, as shown in Figure 5 and Figure 8, the chest area was af-
fected, and the DLmodel trained on PETASC images only on cases
without mismatch may identify it as lung tissue. To address this is-
sue, we implemented 2 strategies including tasks 1 and 3 to provide
a reliable segmentation solution for all potential clinical scenarios.
The performance of our models in the second scenario is lower than
those in the first scenario as the NC images suffer from multiple ar-
tifacts, and are not corrected for attenuation and scatter, and usually
do not include time-of-flight (TOF) and PSF correction.We hypoth-
esize that this would be a versatile solution by considering real clin-
ical needs and could tackle the issue more effectively. As presented
in Supplementary Figure 3, http://links.lww.com/CNM/A531, there
is minimal difference between SUVmean calculated on task 1 and
task 2 compared with reference segmentations, showing an excel-
lent match on clinically relevant information extracted from gener-
ated masks by both tasks.

We employed state-of-the-art nnU-Net V2 pipeline, which
has shown promising results in recent medical image segmentation
studies. Our model achieved excellent accuracy in segmenting or-
gans, such as the lungs, brain, and liver. However, it achieved lower
performance in a few smaller organs with lower objective contrast
and visibility in PET images, especially when using NC images as
input, such as AGs. The overall performance was superior in tasks
1 and 2 using FDG PET images compared with tasks 3 and 4 using
68Ga-PET, as anticipated. The difference can be attributed to the
lower structural information in 68Ga-PET images because of spe-
cific uptake patterns of 68Ga-PSMA tracer. As shown in Supple-
mentary Figure 2, http://links.lww.com/CNM/A531, our models
have shown acceptable performance even on very noisy dynamic
r every 15 included organs.
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FIGURE 7. Representative case with segmentations generated on PET-NC (task 3) and PET-ASC images (task 4). Top row:
coronal slices, middle row: axial, and bottom row: 3D-rendered segmentations. Face is masked for privacy.
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FDG PET images. It should be noted that these images are acquired
shortly after tracer injection, thus a different radiopharmaceutical
uptake pattern can be observed compared with delayed PET images
(usually acquired around 60 minutes postinjection). Despite this fact,
our model showed robust performance on dynamic, noisy frames.

While the Dice coefficient alone may have limitations for
evaluation of image segmentation performance,47 we extensively
evaluated the performance of our models using multiple metrics, in-
cludingDice, Jaccard, mean surface distance, and the volume differ-
ence between the reference and the predicted masks. Our study
achieved significantly better results compared with the study by
Yazdani et al36 where few organs were included for segmentation.
Our Dice scores were 0.82 versus 0.80, 0.90 versus 0.88, 0.84 ver-
sus 0.79, and 0.83 versus 0.81 for kidneys, liver, spleen, and UB or-
gans in task 4, respectively. The improved performance could be
FIGURE 8. 68Ga-PSMA PET/CT imagewith respiratorymismatch.
the visualized images due to selected window width/level. Face is
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due to our approach of excluding cases with mismatches, which
could mislead the DL model during training and underestimate
the Dice value when unreliable segmentation masks are used as ref-
erence in those cases. Klyuzhin et al35 developed a multiorgan seg-
mentation model for 68Ga-PSMA images using both PET and CT
images as inputs in their UNET model. Our model, however, uti-
lizes only the emission images to overcome the aforementioned
limitations. Organ segmentation directly on PET images ensures
alignment between the segmentation masks and the actual meta-
bolic uptake observed on the PET scan, thus eliminating the risk
of misalignment. For example, in pharmacokinetic modeling from
dynamic PET studies, the bladder fills progressively, and both the
thoracic and abdominal organs move during the dynamic imaging
procedure. Using segmentation that tracks these movements directly
on PET image frames can prevent errors in parametric imaging
It should be noted that the kidney boundaries are expanded in
masked for privacy.

© 2025 The Author(s). Published by Wolters Kluwer Health, Inc.
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caused by relying on a single CT-derived masks acquired either be-
fore or after dynamic PET imaging. Tracer uptake can also be
misclassified between moving organs. For instance, for personal-
ized dosimetry purposes, time-integrated activity is calculated by
fitting a curve to the tracer uptake changes within each organ or
VOI over time. Misalignment can result in the activity of organs,
such as the lungs, spleen, liver, or colon being inaccurately recorded
in adjacent structures, disrupting the curve-fitting process. Simi-
larly, the UB, often empty in the initial frames when the CT scan
is performed, fills during the dynamic acquisition. If the segmenta-
tion fails to account for this change, it may underestimate the tracer
accumulation in the bladder and erroneously attribute it to remain-
der structures, leading to significant dose calculation errors. The in-
ference time depends on the local machine performance. It was
about 50 seconds per whole-body PET image on an NVIDIA
RTX 4090 GPU requiring less than 7 GB of dedicated GPU
RAM. We added some steps, such as cropping to the foreground
to increase the inference speed. The code can be found on GitHub
where we shared the models.

As presented in Supplementary Figure 4, http://links.lww.com/
CNM/A531, the trained models in task 2 (trained on 18F-FDG im-
ages) can segment most organs accurately on 68Ga-PSMA images.
Likewise, task 4 (trained on 68Ga images) models can delineate most
of the organs on 18F-FDG images, especially bones, bladder, and
lungs. Cross-tracer inference results suggest a great capacity for
transfer learning on newly developed tracers or other available
tracers. We made the models and training architecture publicly avail-
able to enable users developing new models by fine-tuning these
models, the user can select a baseline model based on the similarities
between the target tracer distribution and the pretrained models.
However, developing a tracer-free model which may segment organs
on any PET images is not recommended as we have a limited number
of PET tracers and the injected tracer is usually known.

This work inherently bears a number of limitations. First, we
developed PET organ segmentation models for 2 common tracers
and suggested training new models for other tracers. However,
transfer learning is 1 option that should be considered. CT segmen-
tation does not share this dependency on the tracer used. Another
limitation of our study is the limited number of training dataset ac-
quired on only 2 PET/CT scanners from the same manufacturer. Po-
tential end-users would need to perform fine-tuning on our publicly
available models using their own local datasets.

CONCLUSIONS
We developed DL-powered CT-less automated organ seg-

mentation models from PET images for 2 common tracers used in
PET/CT imaging to overcome the limitations of CT segmentation
in delineation and quantification. Our model showed acceptable
performance; however, the models using PET-ASC images as input
achieved a better performance. The method can be used in the clin-
ical to enable a number of clinical and research applications.
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